Performing joins in MongoDB with $lookup

Eventually, it seems, looking up data in multiple MongoDB collections at the same time becomes necessary. Okay, necessary, might be strongly phrased. “Very helpful” may be better. Until version 3.2 of MongoDB doing joins wasn’t possible, but with that version came the $lookup aggregation stage operator. The introduction of $lookup allows for left outer joins to be performed on collections in the same database which are not sharded.

For our data for this post let’s utilize the concept of recipes. I’ll lay out some basic traditional SQL database tables and walk through the SQL syntax for a join.

Recipe table layout

SQL Syntax

Let’s have a quick look at what a left outer join looks like in SQL with a couple of different syntaxes in SQL.

Standard SQL
SELECT recipe_type.decription, recipes.title
FROM recipe_type
LEFT OUTER JOIN recipes
ON recipe_type.id = recipes.recipe_type_id
Oracle
SELECT recipe_type.description, recipes.title
FROM recipe_type, recipes
WHERE recipe_type.id = recipes.recipe_type_id(+)

The results of a left outer join for these two tables will contain all of the rows from our “left” table (recipe_type).

$lookup for Joins

Concept of a Left Outer Join
Concept of a Left Outer Join

Our join from $lookup then should be the same from a conceptual standpoint as our SQL cousin. Assuming we have a collection of recipe types and one of recipes our $lookup stage would look like the following:

{
  $lookup:
    {
      from: "recipes",
      localField: "id",
      foreignField: "recipe_type_id",
      as: "recipe_categories"
    }
}

Our $lookup stage then is doing an equality match between the two documents based on the id and recipe_type_id fields. It will add a new array field to the document in our aggregation pipeline document and passes it to the next stage of the pipeline.

Now, given our knowledge of schema design and document models in MongoDB we may not have a need for this exact join as these two collections of data might be embedded in one or the other collection. However, depending on your data access patterns and application needs, the collections may be utilizing references.

Wrap Up

I hope this provided a useful, and quick, introduction to the $lookup aggregation stage and how it is possible to do joins in MongoDB. While you may not find yourself using it all of the time, it is a great tool to have at the ready when it is needed.

There are several MongoDB specific terms in this post. I created a MongoDB Dictionary skill for the Amazon Echo line of products. Check it out and you can say “Alexa, ask MongoDB what is a document?” and get a helpful response.


Follow me on Twitter @kenwalger to get the latest updates on my postings.

Facebooktwitterredditlinkedinmail

Schema Design Considerations in MongoDB

I’ve previously touched on some of the benefits and a few examples of how to do schema design in MongoDB. One often raised question when it comes to modeling data in MongoDB is how best to handle data schema in a non-relational database. I’d like to explore in more depth some of the considerations required for effective schema design for MongoDB implementations.

One of the key things to remember when modeling your data in MongoDB is how the application is going to use the data. Your data access patterns should be of foremost thought when designing your data model. Unlike data normalization concerns in relational databases, embedding data in a document often provides better performance.

When, however, does one decide to embed documents inside another document? What are some of the considerations for doing so when thinking about schema design?

Types of Relationships

In the relational database world modeling different relationships comes down to examining how to model “One-to-N” relationships and the normalization of data. In MongoDB, there are a variety of ways to model these relationships. When doing schema design in MongoDB there is more to consider than a blanket model for a “One-to-N” relationship model.

We need to consider the size of “N” for our modeling because in this instance, size matters. One-to-one relationships can easily be handled with embedding a document inside another document. But what happens if “N” grows? Let’s have a look at the following cases, “One-to-few”, “One-to-Many”, and “One-to-Tons”.

One-to-Few

This is a pretty common occurrence, even in the relational database world. A single record that needs to be associated with a relatively small number of other data points. Something like keeping customer information and their associated phone numbers or addresses. We can embed an array of information inside the document for the customer.

{ 
  "_id" : ObjectId("56cb1cfb72d245023179fda4"),
  "name" :  "Harvey Waldrip",
  "phone" : [
     { "type" : "mobile", "number" : "503-555-5555" }, 
     { "type" : "home", "number" : "503-555-1111"}
  ]
}

This showcases the benefits, and drawbacks, of embedding. We can easily get the embedded information with a single query. The downside, however, is that the embedded can’t be accessed as autonomous data.

One-to-Many

“Many” here covers up to a few thousand or so in number. Say that we are modeling a product made up of smaller parts. For example, if we had an electronic parts kit each part in the kit could be referenced as a separate part.

{ 
  "_id" : ObjectId("AAAA"),
  "part_no" : "150ohm-0.5W"
  "name" : "150ohm 1/2 Watt Resistor"
  "qty" : 1
  "cost" : { NumberDecimal("0.13"), currency: "USD" }
}

Each piece in the kit would have its own document. Notice the format of the “cost” value, I discussed that in a post on Modeling Monetary Data in MongoDB. Each final product, or kit in our example, will contain an array of references to the necessary parts.

{
  "_id" : ObjectId("57d7a121fa937f710a7d486e"),
  "manufacturer" : "Elegoo",
  "catalog_number" : 123789,
  "parts" : [
     ObjectID("AAAA"),
     ObjectID("AAAB"),
     ObjectID("G9D6"),
     ...
  ]
}

Now we can utilize an application level join or depending on the use case the $lookup aggregation pipeline operator to get information about specific parts in a kit. For best performance, we need to make sure we have proper indexes in place on our collections as well.

This style of reference allows for quick and easy search and updating of the parts in the kit. It has basically become an “N-to-N” schema design without needing a separate join table. Pretty slick.

One-to-Tons

As I mentioned, “One-to-Many” is great for up to several thousand references. But what about cases when that isn’t enough?  Further, what if the referencing poses schema design concerns around the document limitation of 16MB? This is where parent referencing becomes very useful.

Let’s imagine an event log situation. We would have a document for the host machine and store that host machine in the log message documents.

Host

{ "_id" : "Bunyan", 
  "name" : "logger.lumberjack.com", 
  "ip_address" : "127.55.55.55"
}

Message

{ "_id" : "MongoDB", 
  "time" : ISODate("2017-08-29T17:25:00.000Z"),
  "message" : "Timber!!!", 
  "host" : ObjectId("Bunyan")
}

Again, for optimum searching, we would want to make sure indexes are properly in place.

Schema Design – Key Considerations

Now that we have seen some of the schema design options, how do we determine which is the best one to utilize? There are a few things to think about before choosing and have somewhat become the standard questions to ask when doing schema design in MongoDB.

Golden Rules for MongoDB Schema Design
  1. Unless there is a compelling reason to do so, favor embedding.
  2. Needing to access an object on its own is a compelling reason to not embed the object in another document.
  3. Unbounded array growth is a bad design.
  4. Don’t be afraid of joins on the application side. A properly indexed collection and query can have highly performant results.
  5. When denormalizing your data, consider the read to write ratio of the application.
  6. Finally, how you model your data depends on your application’s data access patterns. Match your schema design to how your application reads and writes the data.

Wrap Up

There are some great references available for designing your schemas in MongoDB. Some of my favorites are MongoDB Applied Design Patterns and MongoDB in Action. While I have not seen or read it, The Little Mongo DB Schema Design Book looks like a promising resource as well.

Juan Roy has a nice slide deck available on this topic as well. Definitely worth having a look.

There are several MongoDB specific terms in this post. I created a MongoDB Dictionary skill for the Amazon Echo line of products. Check it out and you can say “Alexa, ask MongoDB what is a document?” and get a helpful response.


Follow me on Twitter @kenwalger to get the latest updates on my postings.

Facebooktwitterredditlinkedinmail